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Let f be a continuous function on [&1, 1], which changes its monotonicity
finitely many times in the interval, say s times. In the first part of this paper we have
discussed the validity of Jackson type estimates for the approximation of f by
algebraic polynomials that are comonotone with it. We have proved the validity of
a Jackson type estimate involving the Ditzian�Totik (first) modulus of continuity
and a constant which depends only on s, and we have shown by counterexamples
that in many cases the Jackson estimates involving the DT-moduli do not hold
when there are certain relations between s, the number of changes of monotonicity,
and r, the number of derivatives of the approximated function. Here we deal with all
other cases and we obtain Jackson type estimates involving modified DT-moduli.
We also provide counterexamples to complete the picture. Our technique for the
positive results involves a two-tier approach. We first approximate the given func-
tion by comonotone piecewise polynomials which yield good approximation and
then we replace the latter by polynomials. � 1999 Academic Press
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1. INTRODUCTION

Let f # C[&1, 1] change monotonicity finitely many times, say s�1, in
the interval, and we wish to approximate f by polynomials pn # Pn , the
space of polynomials of degree not exceeding n, which are comonotone
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with f. To be specific, let s�1 and let Ys be the set of all collections
Y :=[ yi] s

i=1 of points, &1< ys< } } } < y1<1. For Y # Ys we set

6(x, Y ) := `
s

i=1

(x& yi),

and denote by 2(1)(Y ) the set of functions f # C[&1, 1], which change
monotonicity at the points yi , and which are nondecreasing in ( y1 , 1), that
is, f is nondecreasing in the intervals ( y2j+1 , y2j) and it is nonincreasing in
( y2j , y2j&1). In particular, if f is continuously differentiable in (&1, 1), then

f # 2(1)(Y ), iff f $(x) 6(x, Y )�0, &1<x<1.

Put

Y :=.
s

Ys ,

and recall that we call a collection Y # Y, s-admissible for f and write
Y # As( f ), if Y # Ys and f # 2(1)(Y ). We write f # 2(1, s), if As( f ){<. Note
that a function may belong at the same time to different classes 2(1, s1) and
2(1, s2) (that is, with s1 {s2).

For Y # Y and f # C[&1, 1] we denote

E (1)
n ( f, Y ) :=inf[& f& pn&1 & : pn&1 # 2(1)(Y ) & Pn&1], (1.1)

and for f # 2(1, s) we set

E (1, s)
n ( f ) := sup

Y # As( f )

E (1)
n ( f, Y ). (1.2)

As usual in C[&1, 1], we denote by & }&, the sup-norm over the interval.
We will also have the notation & }&J for the sup-norm over the interval J.

The first Jackson type estimates for truly comonotone polynomial
approximation were obtained by Newman [11] (see Also Iliev [5] for
some relevant work) who proved that for f # 2(1, s)

E (1, s)
n ( f )�c(s) |( f, 1�n), n�1. (1.3)

In the first part of this work [9], we proved that if f # 2(1, s), then

E (1, s)
n ( f )�c(s) |.( f, 1�n), n�1, (1.4)

where c(s) is a constant depending only on s, |.( f, t) is the DT-modulus
of continuity and .(x) :=- 1&x2, [2] (see also (2.1) with k=1). Note
that (1.4) immediately implies (it also follows by (2.5) below)

E (1, s)
n ( f )�c(s)

&.f $&
n

, n�1, (1.5)
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provided f # B1. Here Br, r�1, is the space of functions f # C[&1, 1],
which possess a locally absolutely continuous (r&1)st derivative in
(&1, 1), such that

&.rf (r)&<�.

We have also provided counterexamples showing that the Jackson
estimates fail to hold in many other cases. Namely, we proved [9] that for
an arbitrary constant A>0 and s�1, if 2�r�2s+2, excluding the case
s=1, r=3, then for any n, there exists a function f =fs, r, n, A # 2(1, s) & Br,
for which

E (1, s)
n ( f )�e (1, s)

n ( f )�A &.rf (r)&>0, (1.6)

where

e(1, s)
n ( f ) := inf

Y # As( f )
E (1)

n ( f, Y ).

In this article we shall prove that for all other cases we have an estimate
similar to (1.5). Namely, we prove

Theorem 1. Let f # 2(1, s) & Br, with either s=1 and r=3, or r>2s+2.
Then we have

E (1, s)
n ( f )�c(r)

&.rf (r)&
nr , n�r. (1.7)

Clearly (1.6) excludes the possibility of extending (1.7) to other pairs of
s and r�2. However, if we allow the constant in (1.7) to depend on the set
Y, then we can still salvage the estimates. Namely,

Theorem 2. Let f # 2(1, s) & Br, s, r�1, and Y # As( f ). Then

E (1)
n ( f, Y )�C(r, Y )

&.rf (r)&
nr , n�r, (1.8)

and

E (1)
n ( f, Y )�c(r, s)

&.rf (r)&
nr , n�N(r, Y ), (1.9)

hold, with c(r, s), a constant depending only on r and s; and C(r, Y ) and
N(r, Y ) constants which depend only on r and Y.
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Remark. The case r=1 is (1.5) and for r=2, Theorem 2 follows from
[6, Theorem 1]. Theorem 1 for r>2s+3 follows from Theorem 6 below
and all cases r>3 in Theorem 2, are consequences of Theorem 8 below.
But note that Theorem 1 is also valid when r=2s+3 and in the particular
case s=1 and r=3 and that Theorem 2 asserts the validity of (1.8) and
(1.9) also for r=3.

In fact we will prove stronger results, Propositions 1 and 2, which we
state at the end of Section 2, but first we need some definitions and proper-
ties of modified moduli of smoothness and this is the content of most of
Section 2. In Section 3 we construct piecewise polynomials which are com-
onotone with f and approximate it well. The key results are Lemma 9 and
12 which are summarized in Proposition 3. Their proofs and especially that
of Lemma 12 (which is the subject of a major construction in [10]) are
complicated and any fresh ideas for simpler proofs would be most welcome.
Then in Section 4 we replace the piecewise polynomials by the appropriate
polynomials. We prove Propositions 1 and 2, as well as have some coun-
terexamples in Sections 5 and 6.

While we have to postpone the statements of Propositions 1 and 2, if we
combine them with the well-known estimates of unconstrained polynomial
approximation (see, e.g., [2] or [12]), then we obtain certain relations
between the degrees of unconstrained and comonotone approximation
which we can easily state at this stage. Denote as usual,

En( f ) :=inf[& f& pn&1& : pn&1 # Pn&1]

the error of the best uniform approximation of f. It follows that for each
Y # As( f ),

En( f )�E (1)
n ( f, Y )�E (1, s)

n ( f ). (1.10)

Proposition 1 and (1.4) yield a partial inverse to (1.10), namely,

Theorem 3. Let f # 2(1, s) and assume that either 0<:<1, or s=1 and
2<:<3, or :>2s+2. Then, if

En( f )<
1
n: , \n>:, (1.11)

then

E (1, s)
n ( f )<

C(:, s)
n: , \n>:, (1.12)

where C(:, s) is a constant depending only on s and :.
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Similarly we have a partial inverse of (1.10) related to Proposition 2.
Namely,

Theorem 4. Let f # 2(1)(Y ), where Y # Ys and assume that :>0, :{2.
Then, if (1.11) holds, then

E (1)
n ( f, Y )<

C(:, Y )
n: , \n>:, (1.13)

and

E (1)
n ( f, Y )<

C(:, s)
n: , \n>N(:, Y ), (1.14)

where C(:, s) is a constant depending only on s and :, and C(:, Y ) and
N(:, Y ) are constants which depend only on : and Y.

Remark. By virtue of (1.6) it follows that whenever : # [1, 2s+2],
except for the case s=1 and 2<:<3, it is impossible to replace N(:, Y )
in (1.14) by N(:, s), hence it is also impossible to replace C(:, Y ) in (1.13)
by C(:, s), whenever : # [1, 2s+2], except for the case s=1 and 2<:<3.

Indeed we prove the following in Section 6.

Theorem 5. Let s�1, and let 1�:�2s+2, excluding the case s=1,
2<:<3. Then for any constant B>0 and each n>:, a function g :=
gs, :, n, B # 2(1, s) exists, for which we simultaneously have

Em(g)�
1

m: , \m>: (1.15)

and

E (1, s)
n (g)�e (1, s)

n (g)�B. (1.16)

Remark. Obviously, if f is monotone, i.e., s=0, then there can be no
dependence on Y in (1.8), (1.9), (1.13), and (1.14) and indeed the corre-
sponding estimates are well-known. They have been proved by the authors
and by Dzyubenko, Kopotun, and Listopad. In particular Kopotun [6, 8]
has shown that the monotone analogue of Theorem 4 fails for :=2. In a
forthcoming paper, we will prove that if s{0, then the case :=2 is not an
exceptional one, that is, Theorem 4 holds as well for :=2.

In the sequel we will have constants c which depend on r, s and k; or on
one or two of them. We will also have constants C which may depend
on other parameters. However, we will use the notation c and C for such
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constants which are of no significance to us and may differ on different
occurrences, even in the same line; and we will have constants with indices
c1 , c2 , ... and C1 , C2 , ... when we have a reason to keep trace of them in the
computations that we have to carry in the proofs.

2. DEFINITIONS AND STATEMENT OF THE MAIN RESULTS

Put I :=[&1, 1]. Given f # C(I ), and k�1, let

2k
h f (x) := :

k

i=0

(&1)k&i \k
i + f \x&

k
2

h+ih+ ,

be the symmetric difference of order k, defined for all x and h�0, such that
x\(k�2) h # I.

The Ditzian�Totik (DT-)moduli of smoothness [2] are defined by

|.
k( f , t) := sup

0�h�t
sup

x
|2k

h.(x) f (x)|, t�0, (2.1)

where the inner supremum is taken over all x such that

x\
k
2

h.(x) # (&1, 1). (2.2)

Also, set

.$(x) :=�\1&x&
$
2

.(x)+\1+x&
$
2

.(x)+, x\
$
2

.(x) # I,

and for a function g defined in (&1, 1), and r�1, denote

|.
k, r(g, t) := sup

0�h�t
sup

x
|.r

kh(x) 2k
h.(x)g(x)|, t�0, (2.3)

where again the inner supremum is taken over all x so that (2.2) holds. We
will apply the moduli in (2.3) for derivatives of f , which is going to be
differentiable in (&1, 1) up to the appropriate order. Then, in order for
the definition of |.

k, r( f (r), t), to make sense, we have to assume that
limx � \1 .r(x) f (r)(x), exists, moreover, in order that |.

k, r( f (r), t) � 0, as
t � 0, we have to assume that

lim
x � \1

.r(x) f (r)(x)=0,
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which we denote by f # Cr
. . Clearly, Cr

. /Br, r�1. For r=0, we put

C0
. :=C(I ), |.

k, 0( f , t) :=|.
k ( f, t).

We recall some properties of the DT-moduli of smoothness (2.1) and (2.3),
which are similar to properties of the ordinary moduli of smoothness (see,
e.g., [2; 12, pp. 165�167]). For f # Cr

. and 0�p<r, we have

|.
k+r& p, p( f ( p), t)�ctr& p|.

k, r( f (r), t), t�0; (2.4)

while if f # Br and 0�p<r, then f # C p
. and

|.
r& p, p( f ( p), t)�ctr& p &.rf (r)&, t�0. (2.5)

In fact, we note although we make no use of it, that the converse of (2.5)
is valid too, namely, if f # C p

. , 0�p<r and |.
r& p, p( f ( p), t)�tr& p, t�0,

then f # Br, and &.rf (r)&�c. Finally, for each f # Cr
. we have

t&k|.
k, r( f (r), t)�c{&k|.

k, r( f (r), {), 0<{�t. (2.6)

Let , # 8k, i.e., ,(0+)=0, ,(t) is nondecreasing and t&k,(t) is nonin-
creasing in (0, �). While in general for f # Cr

. , |.
k, r( f (r), t) is not

necessarily in 8k, it satisfies (2.6). Hence, following ideas of Stechkin and
Timan (see e.g., [12, (2.33)]), the function

,� (t) :=tk sup
u�t

u&k|.
k, r( f (r), u), t>0, ,� (0) :=0, (2.7)

is in 8k and satisfies

c,� (t)�|.
k, r( f (r), t)�,� (t). (2.8)

For , # 8k, denote by BrH ,
k , r�0, the set of functions f # Cr

. , satisfying

|.
k, r( f (r), t)�,(t), t�0.

Note that in view of (2.8), if f # Cr
. , then we always have f # BrH ,�

k . Also
it follows from (2.4) that

BrH ,
k �B pH ,r, p

k+r& p , 0�p�r, (2.9)

where ,r, p(t) :=ctr& p,(t).
Denote by 8

*
k the subset of functions , # 8k, satisfying

|
1

0

,(t)
t

dt<�,
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and for each , # 8
*
k put

,
*

(t) :=|
t

0

,(u)
u

du.

It follows that if , # 8
*
k , then

,(t)=k
,(t)
tk |

t

0
uk&1 du�k |

t

0

,(u)
u

du=k,
*

(t), (2.10)

hence

(t&k,
*

(t))$=t&k&1(,(t)&k,
*

(t))�0,

which implies

,
*

# 8k. (2.11)

Note that if , # 8k and l�1, then ,l (t) :=t l, # 8
*
k+l and the inverse

inequality to (2.10) holds, namely

(,l)*
(t)�,l (t).

In particular for f # Cr
. we have

(,� l)*
(t)�ctl|.

k, r( f (r), t). (2.12)

We are ready to state our main results.

Proposition 1. Suppose that either k=s=1 and r=2, or r=2s+2.
Let , # 8

*
k and f # 2(1, s) & BrH ,

k . Then

E (1, s)
n ( f )�

c
nr ,

* \1
n+ , n�k+r, (2.13)

where c=c(r, k).

In general, for r=2 we have

Proposition 2. Let , # 8
*
k and f # 2(1)(Y ) & B2H ,

k . Then

E (1)
n ( f, Y )�

C(k, Y )
n2 ,

* \1
n+ , n�k+2, (2.14)

and

E (1)
n ( f, Y )�

c
n2 ,

* \1
n+ , n�N(k, Y ), (2.15)
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where C(k, Y ) and N(k, Y ) are constants depending only on k and Y, and
c=c(k, s).

Propositions 1 and 2 augmented by (1.4), together with (2.5),
immediately yield Theorems 1 and 2. Moreover (we elaborate in Section 5),
they provide us with the following result which strengthen (1.7) for
r>2s+3. Namely,

Theorem 6. Let f # 2(1, s) & C r
. , with r>2s+2. Then we have

E (1, s)
n ( f )�

c(r, k)
nr |.

k, r \f (r),
1
n+ , n�k+r, (2.16)

where c(r, k) is a constant depending only on r and k.

We wish to emphasize that (2.16) does not imply (1.7) for r=2s+3.
Also note that (2.16) is not valid in the case s=1, r=3 as this would imply
(1.7) for s=1, r=4, which violates (1.6).

We will show in Section 6 that (2.16) fails for all r�2s+2, except for the
case r=0 and k=1, which is (1.4). Namely, we will prove,

Theorem 7. Let k, s�1 and r�2s+2, excluding the case r=0 and
k=1. Then for any constant A>0 and every n�1, a function f :=
fk, s, r, n, A # 2(1, s) & Cr

. exists, for which

E (1, s)
n ( f )�e (1, s)

n ( f )>A|.
k, r( f (r), 1). (2.17)

However, if we allow the constant in (2.16) to depend on the set Y, then
by Proposition 2 (again we elaborate in Section 5), we can salvage the
estimates. Namely,

Theorem 8. Let f # 2(1, s) & Cr
. , s�1, r>2, and assume Y # As( f ).

Then

E (1)
n ( f, Y )�

C(k, r, Y )
nr |.

k, r \f (r),
1
n+ , n�k+r, (2.18)

and

E (1)
n ( f, Y )�

c
nr |.

k, r \f (r),
1
n+ , n�N(k, r, Y ), (2.19)
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where C(k, r, Y ) and N(k, r, Y ) are constants depending only on k, r, and Y,
and c=c(k, r, s) depends only on k, r, and s.

Remark. We do not know whether or not Theorem 8 is valid for r�2
except for the some special cases. It is valid for r=0 and k=1, which
follows from (1.4); for r=0 and k=2, which is proved in [7] and which
in turn implies the case, r=k=1. We know that Theorem 8 is false when
r=0 and k>2, this follows from [13]; and that it is false when r=1 and
k>3 (see [3, Examples 3.1 and 3.2]). Finally, for r=2 and k>s, one can
modify Kopotun's counterexample [8] to obtain one for Theorem 8. But
when this paper was written we had no answer as to what happens for the
outstanding cases.

We can now settle most of the outstanding cases (see our forthcoming
paper). Namely, surprisingly (comparing to the purely monotone case, see
table below), Theorem 8 is valid for r=1 and k=2, and in turn for r=2
and k=1. Theorem 8 is false for r=2 and k�3 and therefore also for r=1
and k�4. We still have no clue about the last two cases r=1, k=3, and
r=2, k=2.

We illustrate the results in the following array, where s�1. The sign +
in entry (r, k) means that (2.16) is valid for this pair of numbers (and the
proper s), the sign � means that (2.18) and (2.19) are valid for this pair
of numbers, and the sign & means that none of these inequalities is valid.

r b b b b b . . .

2s+4 + + + + + } } }

2s+3 + + + + + } } }

2s+2 � � � � � } } }

b b b b b b b

3 � � � � � } } }

2 � ? & & & } } }

1 � � ? & & } } }

0 + � & & & } } }

1 2 3 4 5 k.

It is interesting to compare this with the purely monotone case (s=0)
where we have (see [6])
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r b b b b b . . .

4 + + + + + } } }

3 + + + + + } } }

2 & & & & & } } }

1 + & & & & } } }

0 + + & & & } } }

1 2 3 4 5 k.

We conclude this section with the concept of the length of the interval
J=[a, b]�I, relative to its position in I. To this end, we define

�J� :=
|J |

.((a+b)�2)
,

where |J | :=b&a is the length of J, and we observe that whenever J1 �J,
then

�J1���J�. (2.20)

Indeed, let x be the midpoint of J1 , then (2.20) follows from the following
inequalities. If x�(a+b)�2, then

|J1 |
2

�x&a=
b&a

2
& }x&

a+b
2 }��J�

2
.(x),

while if x>(a+b)�2, then

|J1 |
2

�b&x=
b&a

2
& }x&

a+b
2 }��J�

2
.(x).

To see this we observe that (�J� �2) . is a nonnegative concave function
which assumes at x=(a+b)�2, the same value (b&a)�2, as the piecewise
linear function (b&a)�2&|x&(a+b)�2|, which vanishes at x=a and
x=b.

Recall the definition of the ordinary modulus of smoothness restricted
to J,

|k( f , t; J) :=sup
x

sup
0�h�t

|2k
h f (x)|, t�0,

where the inner supremum is taken over all h such that x\(k�2) h # J.
Observe, if x\(k�2) h # J�I, then (2.20) yields h�(�J� �k) .(x), which

in turn implies
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|k( f, |J |; J)�sup
x

sup
h�(�J� �k) .(x)

|2k
h f (x)|

�sup
x

sup
h�(�J� �k)

|2k
h.(x) f (x)|

�|.
k \ f,

�J�
k +�|.

k ( f, �J�). (2.21)

Similarly, for J/(&1, 1) and f # Cr
. we have

|k( f (r), |J |; J)�
1

wr(a, b)
|.

k, r( f (r), �J�), (2.22)

where w(a, b) :=- (1+a)(1&b).
By Whitney's theorem

& f&Lk&1( f, } ; J )&J�c|k( f, |J |; J ),

where Lk&1( f, } ; J ) is the Lagrange polynomial of degree �k&1 inter-
polating f at the points a+i(b&a)�(k&1), 0�i�k&1. Hence by virtue of
(2.21) and (2.22),

& f&Lk&1( f, } ; J )&J�c|.
k ( f, �J�), J�I, (2.23)

and for f # Cr
. ,

& f (r)&Lk&1( f (r), } ; J)&J�
c

wr(a, b)
|.

k, r( f (r), �J�), J/(&1, 1). (2.24)

Finally, note that (2.2) implies h�(2�k) .(x), whence h2�h.(x), k>1
(h2�2h.(x), k=1). Therefore,

|k( f, t2)�|.
k( f, t), t�0, k>1,

(2.25)
(|k( f, t2)�2|.

k( f, t), t�0 k=1).

Lemma 1. If f # B2rH ,
k and , # 8

*
k , then f # Cr(I ), and

|k+r( f (r), t, I )�c,
*

(- t), t�0. (2.26)

Proof. It follows from (2.25) that

|(t) :=|k+2r( f, t)�|.
k+2r( f, - t).

Since f # B2rH ,
k , then by (2.4)

|.
k+2r( f, t)�ct2r,(t).
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Hence

|
t

0

|(u)
ur+1 du�c |

t

0

,(- u)
u

du=2c,
*

(- t). (2.27)

In particular we have

|
1

0

|(u)
ur+1 du<�,

which by Brudnyi and Gopengaus [1] (see also [12, Theorem 3.5])
implies f # Cr(I ). In turn by [1], (2.27) now yields (2.26). K

3. SUITABLE SPLINES

Throughout this section we assume that f # BrH ,
k & 2(1)(Y ), with

r, k�1, , # 8k and Y # As( f ).
We begin with the Chebyshev partition of I, namely, we fix n�1 and for

each j=0, ..., n we set xj :=xj; n :=cos( j?�n). Denote Ij :=Ij; n=[x j , xj&1],
j=1, ..., n. Then it is readily seen that

2
n

��Ij �=
|Ij |

.((xj+xj&1)�2)
�

?
n

. (3.1)

Our first lemma in this section is

Lemma 2. Let 1< j<n, and assume that f $(x)�0, x # Ij . Then a non-
decreasing polynomial pj of degree �k+r&1 exists, such that it inter-
polates f at xj and xj&1 , and

& f& pj &Ij
�cn&r,(n&1). (3.2)

Proof. Since f # BrH ,
k , then f $ is by definition, continuous in I j ,

1< j<n. Then it follows by Lemma 2 of [10], that such a polynomial pj

exists, satisfying

& f& pj &Ij
�c |I j | |k+r&1( f $, |Ij |; Ij)

�c |Ij |
r |k( f (r), |I j |; Ij)

�c \ |Ij |
w(xj , x j&1)+

r

|.
k, r( f (r), �I j�)

�c \ |Ij |
w(xj , x j&1)+

r

|.
k, r( f (r), n&1), (3.3)
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where we have applied (2.22) and (3.1). Hence we conclude the proof of
(3.2) by observing that for Ij such that 1< j<n we have

|Ij |�cw(xj , x j&1) n&1. K

For a given Y, let

Oi :=Oi; n(Y ) :=(x j+1 , x j&2), if yi # [x j , xj&1),

where x&1 :=1, xn+1 :=&1, and set

O :=O(Y; n) := .
s

i=1

Oi ,

and

O* :=O*(Y; n) :=O(Y; n) _ I1 _ In .

Next let O� q=: [aq , bq], q�s, be the connected components of the closure
O� of O, indexed so that bq+1<aq . We show

Lemma 3. Let r>s. Then, for each q, a polynomial Pq of degree
�k+r&1, exists

Pq(aq)= f (aq), (3.4)

P$q(x) 6(x, Y )�0, x # O� q & [xn&1 , x1], (3.5)

and

& f&Pq &O� q & [xn&1 , x1]�cn&r,(n&1). (3.6)

Proof. Since f # BrH ,
k , then by defintion f # C r[xn&1 , x1]. Now r>s,

hence it follows by Lemma 3.3 of [4] applied to f $, that there exist polyno-
mials P of degree �k+r&1 satisfying (3.5), such that

& f $&P$&O� q & [xn&1, x1]

�c |O� q & [xn&1 , x1]| r&1 |k( f (r), |O� q & [xn&1 , x1]|; O� q & [xn&1 , x1]).

We take Pq so that (3.4) holds and P$q(x)=P$(x), which in turn implies

& f&Pq&O� q & [xn&1 , x1]

�c |O� q & [xn&1 , x1]| r |k( f (r), |O� q |; O� q & [xn&1 , x1])

�c �O� q�r ,(�O� q �). (3.7)
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The last inequality follows as in the proof of Lemma 2. Finally, we have

�O� q ��
c
n

, (3.8)

and the proof of (3.6) is complete. K

As is readily seen from its proof, Lemma 3 can be formulated for r>1,
provided we take n>N(Y ) where N(Y ) is taken so that for each n>N(Y )
every O� q contains exactly one point yq # Y, and Y/[xn&2 , x2). Namely,

Lemma 3$. Let r>1, and suppose that n>N(Y ). Then for each q, a
polynomial Pq of degree �k+r&1, exists such that (3.4), (3.5), and (3.6)
hold.

Denote by 7m :=7m; n the collection of continuous splines on the
Chebyshev partition, with polynomial pieces of degree <m, and denote by
7m, O :=7m, O(Y; n) the subcollection of splines S # 7m , which are polyno-
mials on each O� q . Note that S$ exists except perhaps at the Chebyshev
nodes so we will use it freely without mentioning the finitely many excluded
points. We note that we can combine Lemmas 2, 3, and 3$ to yield results
which are interesting by themselves, namely,

Lemma 4. Let r>s. Then there exists a spline S # 7k+r, O such that

S$(x) 6(x, Y )�0, x # [xn&1 , x1], (3.9)

and

& f&S&[xn&1 , x1]�cn&r,(n&1). (3.10)

And

Lemma 4$. Let r>1, and n>N(Y ). Then there exists a spline
S # 7k+r, O such that (3.9) and (3.10) hold.

Proof. We will prove Lemma 4, the proof of Lemma 4$ being similar.
Evidently, the only discontinuities that S might have when we put together
the polynomial pieces constructed in Lemmas 2 and 3 (and 3$), occur at the
points bq , whose number is at most s. To rectify that we add a piecewise
constant function with the proper jumps at those bq 's which are in
[xn&1 , x1]. Since by (3.6), the size of each jump is bounded by

| f (bq)&Pq(bq)|�cn&r,(n&1),

and there are at most s such points, the proof of (3.10) is complete. K
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Thus, had we been satisfied with the construction of a continuous spline
which is comonotone with f and approximates it well on [xn&1 , x1], then
we would have been satisfied with Lemma 4 and we would only have to
limit ourselves to r>s, or we would have been satisfied with Lemma 4$ and
would have to limit ourselves to n>N(Y ). In order to extend the com-
onotonicity and preserve the good approximation on the whole interval
[&1, 1] we have to further restrict r. We first extend Lemma 2 to the
intervals containing the endpoints.

Lemma 5. Take r=2 and assume that , # 8
*
k . If f is monotone in I1 ,

respectively In , then a monotone polynomial p1 , respectively pn , of degree
�k+1 exists, such that

& f& pj&Ij
�cn&2,

*
(n&1), j=1, n, respectively.

Proof. We prove the case j=1, the other is similar. First we observe
that Lemma 1 implies that f # C1(I ). Hence, as in the proof of Lemma 2
such a polynomial p1 exists, satisfying

& f& p1&I1
�c |I1 | |k+1( f $, |I1 |; I1)

�c |I1 | ,
*

(- |I1 | )�cn&2,
*

(n&1), (3.11)

where we applied Lemma 1 again, and the fact that |I1 |�(c�n2). K

An obvious consequence of Lemma 5 and (2.9) is

Corollary 1. Take r>2. If f is monotone in I1 , respectively In , then a
monotone polynomial p1 respectively pn , of degree �k+r&1 exists, such
that

& f& pj &Ij
�cn&r,(n&1), j=1, n, respectively.

Finally we extend Lemma 3 all the way to the endpoints and for this we
have to restrict r even further. Namely,

Lemma 6. Suppose either s=k=1 and r=2, or r=2s+2 and assume
that , # 8

*
k . If 1 # O� 1 , then there exists a polynomial P1 of degree

�k+r&1, such that

P$1(x) 6(x, Y )�0, x # O� 1 ,

and

& f&P1 &O� 1
�cn&r,

*
(n&1). (3.12)
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Proof. It follows from the assumptions on r and Lemma 1 that
f # C r�2(I ), and

|k+r�2( f (r�2), t)�c,
*

(- t).

As in (3.7) we apply Lemma 3.3 or 3.2 of [4], and conclude that such a
polynomial exists, satisfying

& f&P1&O� 1
�c |O� 1 | r�2 |k+r�2( f (r�2), |O� 1 |; O� 1)

�c |O� 1 | r�2 ,
*

(- |O� 1 | )�cn&r,
*

(n&1),

where we used the observation that |O� 1 |�(c�n2). K

In particular for n=1, we get

Corollary 2. Under the assumptions of Lemma 6,

E (1, s)
k+r ( f )�c,

*
(1).

Thus, Lemmas 4 and 4$ may be extended to the whole interval. The
proofs are the same so they will not be repeated. Namely,

Lemma 7. Let either s=k=1 and r=2, or r=2s+2, and assume that
, # 8

*
k . Then there exists a spline S # 7k+r, O & 2(1)(Y ), such that

& f&S&�cn&r,
*

(n&1). (3.13)

And

Lemma 7$. Let r=2 and assume that , # 8
*
k . Then for n>N(Y ), there

exists a spline S # 7k+r, O & 2(1)(Y ), such that (3.13) holds.

The next results are needed for Proposition 2 when n is ``small.''

Lemma 8. Let T :=[t1 , ..., tk+1] be a collection of k+1 points
tj # (&1, 1). If g # B2H ,

k and , # 8
*
k , then, for each x # I,

| g$(x)&Lk(g$, x; t1 , ..., tk+1)|�C(T ) } `
k+1

j=1

(x&t j) } ,
*

(1),

where Lk(x, g$, t1 , ..., tk+1) is the Lagrange polynomial of degree �k, which
interpolates g$ at the points tj .

Proof. In the proof C stand for different constants, that depend only on T.
Put Qk(x) :=Lk(g$, x; t1 , ..., tk+1), and Lk(x) :=Lk(g$, x; I ). By Whitney's
inequality and Lemma 1,
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&g$&Qk&�&g$&Lk &+&Lk&Qk&

�&g$&Lk&(1+|I | k max
1�i�k

|t i+1&t i |
&k)

�C|k+1(g$, |I | , I )

�C,
*

(- |I | )�C,
*

(1). (3.14)

Now let J=[a, b]/(&1, 1) be an interval such that T/(a, b) and |J |>1.
Put

Lk&1 :=Lk&1(g", x, J), lk(x) :=g$((a+b)�2)+|
x

(a+b)�2
Lk&1(u) du.

Then by (2.24) and (2.10)

&g"&Lk&1&J�c
1

w2(a, b)
|.

k, 2(g", �J�)�C,(1)�C,
*

(1),

which together with (3.14) implies

&Q$k&Lk&1&�c &Qk&lk&J

�c(&Qk& g$&+&lk& g$&J)

�C,
*

(1)+c &Lk&1& g"&J�C,
*

(1).

Hence

&Q$k& g"&J�&Lk&1& g"&J+&Lk&1&Q$k&�C,
*

(1).

Now, given x # J, let tj # T be the closest to x. Then

| g$(x)&Qk(x)|= } |
x

tj

(g"(u)&Q$k(u)) du }
�C |x&tj | ,

*
(1)�C(T ) `

k+1

i=1

|x&t i | ,
*

(1).

This completes the proof. K

And

Lemma 8$. If r=2 and , # 8
*
k , then

E (1)
k+2( f, Y )�C(Y, k) ,

*
(1).
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Proof. First assume that s�k+1. Since evidently

Lk( f $, x; y1 , ..., yk+1)#0,

we may put

P(x) :=f (0)= f (0)+|
x

0
Lk( f $, u; y1 , ..., yk+1) du.

Then it readily follows that P # 2(1)(Y ), and by Lemma 8,

& f&P&�& f $&Lk( } ; f $, y1 , ..., yk+1)&�C(Y, k) ,
*

(1).

Thus Lemma 8$ is proved for the case s�k+1, and it remains to deal with
s�k. In this case we write ti :=yi , i=1, ..., s, and we fix k&s+1 arbitrary
additional points ts+1 , ..., tk+1 , say in the interval (&1, ys). Let

?(x) := `
k+1

i=s+1

(x&ti).

Then by Lemma 8 there exists a constant C0=C0(Y, k), such that

| f $(x)&Lk( f $, x; t1 , ..., tk+1)|�C0 |6(x, Y ) ?(x)| ,
*

(1), x # I.

Put C1 :=C0 &?&, and let

P$(x) :=Lk(x, f $, t1 , ..., tk+1)+C16(x, Y ) ,
*

(1),

and

P(x) := f (0)+|
x

0
P$(u) du.

Then we have

& f&P&�& f $&P$&�2C1 &6( } , Y )& ,
*

(1)=: C(Y, k) ,
*

(1).

And at the same time,

6(x, Y ) P$(x)=6(x, Y )(Lk(x, f $, t1 , ..., tk+1)& f $(x))

+6(x, Y ) f $(x)+C16 2(x, Y ) ,
*

(1)

�6(x, Y ) f $(x)�0.

This completes the proof. K
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Our last result relates the polynomial pieces of the spline S # 7m to one
another. First we need some notation. We let Ii, j :=Ii, j; n denote the
smallest interval containing Ii and Ij . For S # 7m we put

am(S) :=am; n(S) :=max
i, j \ |Ij |

|Ii, j |+
m

&pi& pj&Ii
,

where pi denotes the polynomial defined by pi | Ii
:=S| Ii

. Observe, that, for
each i and j, if & is between i and j, then

|Ii, & |
|I& |

<
|I i, j |
|Ij |

. (3.15)

We are ready to state our result (compare with Lemma 6 of [10])

Lemma 9. For each S # 7k we have

ak(S)�c|.
k (S, n&1)�cak(S). (3.16)

Proof. Write | :=|.
k (S, n&1). We begin with the proof of the left-hand

estimate, that is, we have to prove that for each i and j,

&pi& pj&Ii
�c \ |Ii, j |

|Ij | +
k

|. (3.17)

To this end let us first assume that j=i\1 and set L(x) :=Lk&1(S, x; I i, j).
Then (2.23) implies

&pi&L&Ii
=&S&L&Ii

�&S&L&Ii, j
�c|.

k (S, �Ii, j �)�c|,

where in the right-hand inequality we applied (3.1). Observing that pj&L
is a polynomial of degree �k&1, we have

&pj&L&Ii
�&p j&L&Ii, j

�c &pj&L&Ij
�c|.

Hence

&pi& pj&Ii
�c|, (3.18)

which implies (3.17) for j=i\1. Otherwise, assume i< j. Then for each &,
i<&< j, it follows by (3.15) and (3.18) that

&p&& p&\1&Ii
�&p&& p&\1&Ii, &

�c \ |Ii, & |
|I& | +

k&1

&p&& p&\1 &I&

�c \ |Ii, & |
|I& | +

k&1

|�c \ |Ii, j |
|Ij | +

k&1

|.
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Therefore,

&pj& pi&Ii
�&pj& pj&1&Ii

+ } } } +&pi+1& p i&Ii

�c | j&i | \ |Ii, j |
|I j | +

k&1

|�c \ |I i, j |
|Ij | +

k

|.

Thus (3.17) is proved. We turn to the proof of the right-hand estimate in
(3.16). We take x and h�(1�n) satisfying (2.2), and for each i=0, ..., k we
let &i , be so that x+(i&(k�2)) h.(x) # I&i

. Then

|2k
h.(x) S(x)|=|2k

h.(x)(S& p&0
)|�2k max

i=1, ..., k
&p&i

& p&0
&I&i

�c max
i=1, ..., k \

|I&0
|

|I&0 , &i
|+

k

&p&i
& p&0

&I&i
�cak(S),

where we used the inequality |I&0 , &i
|�c |I&0

|, i=1, ..., k, which follows from
(3.1). K

4. COMONOTONE POLYNOMIALS

We begin with a lemma which is a trivial consequence of (1.4) and (3.1).
Namely,

Lemma 10. Let f # C(I ) & 2(1)(Y ), be locally absolutely continuous and
such that

& f $&Ij
�

1
|Ij |

, j=1, ..., n. (4.1)

Then a polynomial Vn # 2(1)(Y ) of degree �n exists, such that

& f&Vn&�c. (4.2)

Next we need a partition of unity of the type we had in [10] but we
require a few more properties. We quote Lemma 5.4 of [4], namely

Lemma GS. For each fixed integer l, there exists a collection [{j, n]n
j=1 ,

of polynomials of degree �cln, with the following properties.

:
n

j=1

{j, n(x)#1; (4.3)

|{ (*)
j, n(x)|�C

hj

\*+1
n (x) \

\n(x)
|x&xj |+\n(x)+

l+1

, x # I, *=0, 1, 2, ...;

(4.4)
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where \n(x) :=n&1
- 1&x2+n&2 and C=C(s, l, *),

{$j, n( yi)=0, i=1, ..., s, j=1, ..., n; (4.5)

and

{j, n( yi)=0, \i, j such that y i # O� q and I j /3 O� q . (4.6)

We are ready to state the analogue of [10, Lemma 7], namely,

Lemma 11. Let l�3k, and assume that S # 7k, O and S$( yi)=0,
i=1, ..., s. Then for n1�n with n1 divisible by n, the polynomial

Dn1
(x) := :

n

i=1

pi (x) :
& : I&, n1

�Ii

{&, n1
(x), (4.7)

satisfies

D$n1
( yi)=0, 1�i�s, (4.8)

and for each *=0, ..., s+1,

|S (*)(x)&D (*)
n1

(x)|�C0 ak(S)
1

\*
n(x)

, x # I, (4.9)

where C0=C0(s, k, l ). Moreover, for each 0<$<1,

|S$(x)&D$n1
(x)|�C1 ak(S, (x&$, x+$))

1
\n(x)

+C2ak(S)
1

\n(x) \
\n1

(x)

\n1
(x)+$+

l+1&3k

, x # I, (4.10)

where C1=C1(k, s, l ) and C2=C2(k, s, l ). We have used the notation

ak(S, (x&$, x+$)) :=max
i, j \ hi

hi, j+
k

&pi& p j&Ii
,

where the maximum is taken over all i and j such that Ii & (x&$, x+$){<
and Ij & (x&$, x+$){<.

Proof. Evidently (4.8) follows by (4.5) and (4.6), by virtue of the fact
that S # 7k, O . Here is where we need the assumption that S is a single
polynomial in each connected component of O. The rest of the proof
follows verbatim the proof of [10, Lemma 7], where one has to replace
.( } ) by 1. K
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Finally, we can construct a good polynomial approximation to S.

Lemma 12. If S # 7k, O & 2(1)(Y ) is such that

ak(S)�1, (4.11)

then there is a polynomial Pn # 2(1)(Y ) of degree �cn, satisfying

&S&Pn&�c. (4.12)

Proof. The first part of the proof is a repetition of the proof of [10,
Lemma 9] almost word for word. In fact, the main difference is that one
has to replace each .(hj) and .(\), by 1, whence simplifying some of the
computations. However, one other modification is required in the construc-
tion of S4 in that proof. Namely, we require that whenever a connected
component O� q & F e{<, then O� q �F e. Since O� q consists of at most 3s
intervals Ij , this makes no difference in our construction and implies that
S4 # 7k, O . Thus, with the polynomial Vn from Lemma 10 of this paper,
which is associated with S3 of the abovementioned proof, and the polyno-
mial Dn1

from Lemma 11 of this paper which is associated with S4 , we end
up with a polynomial,

R� n :=Vn+Rn :=Vn+Dn1
+cQn+cMn ,

which satisfies

&R� n&S&�c, (4.13)

and

R� $n(x) 6(x, Y )�0, x # I"O. (4.14)

It remains to show that

R� $n(x) 6(x, Y )�0, x # O. (4.15)

Observe that by virtue of Lemma 10, the polynomial Vn satisfies (4.15),
and that by [10, (4.21) and (4.25)], the same is true for Qn and Mn ,
respectively. Hence, we only have to adjust Dn1

to satisfy (4.15) without
hurting (4.14). To this end, recall that Dn1

satisfies (4.8) and (from (4.9))
for each *=2, ..., s+1,

|S (*)
4 (x)&D (*)

n1
(x)|�C0

1
\*

n(x)
, x # I. (4.16)
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So we take O� q , a connected component of the closure O� of O and we let
yiq+1 , ..., yiq+& # O� q , (&�s). Further, we put x jq

to be the closest to O� q ,
such that Ijq

& O=<. Then (4.8) and (4.16) together with (4.11) yield for
x # O� q ,

|D$n1
(x)&S$4(x)|=|6 &

+=1(x& yiq++)[x, y iq+1 , ..., yiq+& ; D$n1
&S$4]|

=|6 &
+=1(x& yiq++)(D (&+1)

n1
(%)&S (&+1)

4 (%))|

�c\&&&1
n (%) |6 &

+=1(x& yiq++)|, (4.17)

where we recall that the square brackets denote the divided difference of
order & of the function D$n1

&S$4 and % # O� q . Hence

|D$n1
(x)&S$4(x)|�

c
\n(xjq

)

6 &
+=1 |x& yiq++ |

6 &
+=1 |xjq

& yiq++ |
�

c3

\n(x jq
)

|6(x, Y )|
|6(xjq

, Y )|
. (4.18)

For the first inequality in (4.18), we used the fact that O� q is connected and
contains at most 3s intervals, so that

|O� q |t\n(%)t\n(x jq
)t(x jq

& yiq++), 1�+�&;

and for the second inequality we used the above together with the fact that
for any yi � O� q ,

|x& yi |
|xjq

& yi |
�

|x& yi |
|x&x jq

|+ |x& yi |
�

\n(x)
|O� q |+\n(x)

�c>0.

Now, recall the polynomials Tj (x)=Tj (x, 6s, Y ) that were introduced in
[3, the definition above Lemma 5.3]. Evidently,

&Tj &�c4 , (4.19)

and by [3, (6.15)]

T $j (x) 6(x, Y ) sgn 6(xj , Y )�0, x # I. (4.20)

Finally, by [3, (5.22)], we have

|T $jq(x)|�
c5

\n(xjq
)

|6(x, Y )|
|6(xjq

, Y )|
, x # O� q . (4.21)

Thus if we set

T� jq
:=

c3

c5

Tjq
sgn 6(xjq

, Y ),
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and

D� n1
:=Dn1

+:
q

T� jq
,

where the sum is taken on all the connected components O� q , then it
follows by (4.18), (4.21) and (4.20), together with the fact that S4 is
comonotone with S, that for x # O� q0

,

D� $n1
(x) 6(x, Y )=(D� $n1

(x)&S$4(x)) 6(x, Y )+T� jq0
(x) 6(x, Y )

+ :
q{q0

T� jq
(x) 6(x, Y )+S$4(x)) 6(x, Y )�0. (4.22)

Hence, for the polynomial

Pn :=R� n+:
q

T� jq
,

we have

P$n(x) 6(x, Y )�0, x # I.

We conclude the proof by observing that (4.13) and (4.19) imply that

&Pn&S&�c+\:
q

c3c4

c5 +=c+c6s. K

Combining Lemmas 9 and 12 we conclude that

Proposition 3. If S # 7m, O(Y; n) & 2(1)(Y ), then

E (1)
c7n(S, Y )�c8|.

m \S,
1
n+ , (4.23)

where c7=c7(m, s) and c8=c8(m, s).

5. PROOFS OF THE POSITIVE RESULTS

We begin with

Proof of Proposition 1. It follows by Lemma 7 and Proposition 3 that
for n>c, there exist appropriate Pn and S such that

& f&Pn&�& f&S&+&S&Pn&

�cn&r,
*

(n&1)+c|.
k+r(S, n&1).
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By virtue of (3.13) we have

|.
k+r(S, n&1)�c(n&r,

*
(n&1)+c|.

k+r( f, n&1))

�cn&r(,
*

(n&1)+|.
k, r( f (r), n&1))

�cn&r(,
*

(n&1)+,(n&1))

�cn&r,
*

(n&1),

where in the second inequality we have applied (2.4) and in the last, we
have used (2.10). This proves Proposition 1 for n>c while for k+r�n�c,
it readily follows from Corollary 2. This completes our proof. K

Similarly

Proof of Proposition 2. It is easy to see that (2.14) follows from (2.15)
with Lemma 8$ playing the role of Corollary 2, so we only need to prove
the latter. Now (2.15) follows by Lemma 7$ and Proposition 3, in the same
manner in which we proved Proposition 1. K

We are ready to give the proofs of the theorems.

Proof of Theorem 6. Since f # BrH ,�
k where ,� is defined in (2.7), and

r>2s+2, then we obtain by (2.9) that f # B2s+2H ,� r&2s&2
k+r&2s&2 , with

r&2s&2�1. The proof is now concluded by Proposition 1 and (2.12). K

Proof of Theorem 8. We follow the proof of Theorem 6 (artificially)
replacing s by 0 everywhere and replacing Proposition 1 by Proposi-
tion 2. K

Proof of Theorem 1. As we already mentioned we could deduce most
cases of Theorem 1 from Theorem 6. We have however two outstanding
cases, and the proof is not any simpler if we restrict ourselves to the two
special ones. Thus we give an independent proof of all cases. We take f # Br

such that &.rf (r)&�1. First we let r>2s+2, then we observe that (2.5)
implies that f # B2s+2H ,�

r&2s&2 , where ,� (t) :=ctr&2s&2. Evidently

,�
*

=
1

r&2s&2
,� # 8

*
r&2s&2 ,

and Theorem 1 follows from Proposition 1. The remaining case is s=1 and
r=3. For this case we repeat the above proof (artificially) replacing s by
0 everywhere and applying Proposition 1. K

Proof of Theorem 2. As we have already mentioned the case r=1 is
(1.5) and for r=2, Theorem 2 follows from [6, Theorem 1]. Most other
cases can be derived from Theorem 8, but we have the outstanding case
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r=3 and as in the proof of Theorem 1, the proof of the general case is as
simple. Actually we only need to repeat the proof of Theorem 1 (artifi-
cially) replacing s by 0 everywhere and finally replacing Proposition 1 by
Proposition 2. K

We have two theorems left to prove.

Proof of Theorem 3. The case 0<:<1, readily follows from the fact
that (1.11) implies that |.( f, t)=O(t:) and then from (1.4). All other cases
follow from Proposition 1. In fact, if :>2s+3 we can derive the result
from Theorem 6, but there are two uncovered intervals for which we
anyway need to call upon Proposition 1, so we will apply it for all cases.
Indeed, if :>2s+2, then let m :=[:]+1. Then (1.11) implies

En( f )�n&2s&2,� (n&1), n�m,

where ,� (t) :=t:&2s&2. Hence by [12, Theorem 18.2], we obtain that
f # C2s+2

. and |.
m&2s&2, 2s+2( f (2s+2), t)�c(:) t:&2s&2. As in the proof of

Theorem 1 we evidently have

,�
*

=
1

:&2s&2
,� # 8

*
m&2s&2 ,

so that (1.12) readily follows by Proposition 1. Finally, when s=1 and
2<:<3, we let m=3 and (artificially) replace s by 0 everywhere in the
proof. Again (1.12) follows by Proposition 1. K

Proof of Theorem 4. For 0<:<2, Theorem 4 follows from [7]. All
other cases are proved in the same manner as Theorem 3 where we replace
Proposition 1 by Proposition 2. Again for :>3 we could use Theorem 8. K

6. COUNTEREXAMPLES

Proof of Theorem 5. We first recall that the direct theorem for non-
constrained approximation yields the estimate

Em( f )�
c1

mr &.rf (r)&, m�r, (6.1)

where c1=c1(r). Now, for :=2, we take r=2, for :=2s+2, we take
r :=2s+2, and for all other :, we take r :=[:]+1. Put A :=Bc1 ,
f :=fs, r, n, A and

g :=(c1 &.rf (r)&)&1 f.
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Since g # Br and &.rg(r)&=c&1
1 , then (6.1) implies (1.15), where we used

the inequality :�r�[:]+1, while (1.16) follows from (1.6). K

Proof of Theorem 7. We first observe that for f # Cr
. , r�0, we have

|.
k, r( f (r), t)�c0(k, r) |.

1, r( f (r), t), k�1, (6.2)

and

|.
k, r( f (r), t)�c1(k, r) |.

2, r( f (r), t), k�2, (6.3)

which is going to reduce the proof to the cases of k=1 and k=2 only.
Next we note that if f # Br+1, then by (2.5) f # Cr

. and

|.
1, r( f (r), t)�c2(r) t &.r+1f (r+1)&, (6.4)

and

|.
2, r&1( f (r&1), t)�c3(r) t2 &.r+1f (r+1)&, r>0. (6.5)

Recall that in view of (1.6), if 2�r�2s+2 excluding the case s=1 and
r=3, then for any constant B>0, there exists a function g :=
gs, r, n, B # Br & 2(1)(Ys) (for some Ys) such that

&.rg (r)&=1, (6.6)

while

E (1, s)
n (g)�e (1, s)

n (g)>B. (6.7)

We are ready to prove (2.17). To this end, let A>0 be given. If
1�r<2s+2 except for r=2 and s=1, then taking B :=c0(k, r) c2(r) A
and setting f :=gs, r+1, n, B , we obtain by (6.2), (6.4), and (6.6),

|.
k, r( f (r), 1)�c0|.

1, r( f (r), 1)�c0 c2 &.r+1f (r+1)&=c0 c2 .

Hence by (6.7),

e (1, s)
n ( f )=e (1, s)

n (gs, r+1, n, B)>B�
B

c0c2

|.
k, r( f (r), 1)=A|.

k, r( f (r), 1),

and (2.17) is proved. Now let k�2 and assume r=0 or r=2 and s=1.
Then we take B :=c1(k, r) c2(r+1) A and we set f :=gs, r+2, n, B . It follows
by (6.3), (6.5), and (6.6) that

|.
k, r( f (r), 1)�c1|.

2, r( f (r), 1)�c1 c3 &.r+2f (r+2)&=c1 c3 ,
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whence (6.7) implies

e1, s
n ( f )=e1, s

n (gs, r+2, n, B)>B�
B

c1 c3

|.
k, r( f (r), 1)=A|.

k, r( f (r), 1),

and (2.17) is proved.
Two cases remain: r=2 and k=s=1, and r=2s+2 for all s and k. By

(6.2) the latter is proved once we prove it for k=1, so we may assume that.
In these cases we need to look more carefully at the function yielding (6.7)
and even to modify it somewhat. The following straightforward inequality
is the key to proving the remaining cases for k=1, namely,

|.
1, r( f (r), t)�2 &.rf (r)&. (6.8)

First for the case r=2 and s=1, we begin with

g2(x) := & 1
4 (x+1) log(x+1), M2 :=&g2&,

and let x0 # (&1, 1) be such that

| g$2(x0)|>n2(A+M2+1).

Similar to [8, p. 205], we denote by T2(x) the Taylor polynomial of degree
2 at x0 of the function g2 and set

f (x) :={g2(x)&T2(x),
0,

if x�x0 ,
if x<x0 ,

then evidently f # Cr
. . Observe that T"2(x)#g"2(x0). Hence if we let

f� (x) :=f (x)+T2(x), then by (6.8)

|.
1, 2( f ", t)=|.

1, 2( f� ", t)�2 &.2f� "&�2 &.2g"2&=1.

This in turn implies, following the arguments we used in [9, pp. 205�206],
that

e(1, 1)
n ( f )>A�A|.

1, 2( f (2), 1),

which is (2.17). For the case r=2s+2 we have to modify the function g
yielding (6.7), in order that our f be not only in Br but actually in Cr

. . To
this end we take B :=4A and we let

g(x) :=gs, r, n, B(x) :=&(1+x)s+1 log(1+x)&Ls+2(x),
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where Ls+2 is a polynomial of degree s+2, whose derivative has s+1
prescribed zeros, none at x=&1 and it is so chosen that g # Br & 2 (1)(Ys),
and satisfying (6.6) and (6.7). (See [9, p. 204] for details.) We observe that

g(r)(x)=ar(1+x)&s&1, (6.9)

where ar is a constant depending only on r, and

g$(&1){0. (6.10)

Now, for each 0<=<1, denote by T=(x) the Taylor polynomial of degree
r at the point &1+=, and put

g=(x) :={g(x),
T=(x),

if x�&1+=,
otherwise.

Evidently,

g= # C r
. ,

and

&.rg (r)
= &�&.rg(r)&=1.

Hence by (6.8),

|.
1, r(g (r)

= , t)�2.

Since

g(x)&T=(x)=(s+1)
1
r! |

x

&1+=
(x&t)r g(r+1)(t) dt,

it follows by (6.9) that for x # [&1, &1+=],

| g(x)&T=(x)|�
|ar |
r! |

&1+=

&1
(1+t)r (1+t)&s&2 dt<c=r&s&1<c=,

and

| g$(x)&T $=(x)|<c=r&s&2<c=.

In view of (6.10), it is thus possible to select =0>0, so that

&g& g=0
&<

B
2

,
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and that g=0
is comonotone with g. We conclude that

e (1, s)
n (g=0

)�e (1, s)
n (g)&&g& g=0

&>B&
B
2

=2A�A|.
1, r(g (r)

=0
, 1).

This completes our proof. K
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